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A New Adaptive Filter for Estimating and Tracking
the Delay and the Amplitude of a Sinusoid
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Abstract—In this paper, we propose a new adaptive filter for
estimating and tracking the delay and the relative amplitude of
a sinusoid vis-a-vis a reference sinusoid of the same frequency.
By careful choice of the sampling period, a two-tap finite-impulse
response (FIR) filter model is constructed for the delayed signal.
The delay and the amplitude are estimated by identifying the FIR
filter for which a delay variable and an amplitude variable are
updated in an LMS-like manner, deploying, however, separate step
sizes. Convergence analysis proving convergence (in mean) of the
delay and the amplitude updates to their respective true values is
provided, and necessary convergence conditions are established.
Stability regions in the step-size plane are also identified that
guarantee bounded steady-state error variance for the delay and
the amplitude estimates. The proposed method is computationally
simple as the primary computation is a rotation of a vector
that can efficiently be implemented using CORDIC processors.
MATLAB-based simulation studies confirm satisfactory estima-
tion performance of the proposed algorithm.

Index Terms—Adaptive filters, convergence analysis, least mean
square (LMS) algorithm, mean square error (MSE), sinusoidal
signals, time-delay estimation.

I. INTRODUCTION

E STIMATION of time delay(s) between the noisy versions
of a signal received at two or more spatially separated sen-

sors [1] has been an important topic in areas such as radar and
sonar ranging, target localization and tracking, speed sensing,
direction finding, synchronization in communication receivers,
biomedicine, exploration geophysics etc. For stationary time
delay, a popular offline technique is the generalized cross
correlator [2], which estimates the delay by locating the peak
of the cross-correlation function of the filtered versions of the
observed data. While this approach can provide maximum-
likelihood estimation performance under Gaussian signal and
noise assumptions, the resolution of the delay estimate in this
technique, however, is limited by the sampling period. For
the case of deterministic signals, offline techniques have been
proposed that achieve subsample accuracy. These include the
discrete-time Fourier transform-based method [3], quadrature
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delay estimator [4], and estimators based on a combination of
cross correlation and autocorrelation [5].

When the time delay is time-varying due to relative
source/receiver motion, adaptive tracking of it is necessary. In
[6], an adaptive tracker was proposed, which adapts a finite-
impulse response (FIR) filter to model the time delay and
estimates it by interpolating the filter coefficients. Alternatively,
explicit delay adjustments have been achieved [7]–[10] by
constraining the filter coefficients to be some functions of the
time delay.

For sinusoidal signals that commonly occur in radar, sonar,
and digital communication, an adaptive filter was proposed in
[11] that estimates the delay between the received copies of a si-
nusoid of known frequency, received at two spatially separated
sensors. This algorithm estimates the delay by directly updating
a delay variable, but it considers only a special case where
both the received sinusoids are assumed to have unity amplitude
simultaneously. In practice, however, the relative amplitude of
the signals is also unknown and is often time-varying, like the
delay. In such cases, estimation and tracking of the delay is not
possible without simultaneous estimation and tracking of the
amplitude. Presence of two unknown time-varying parameters,
namely, delay and amplitude, however, makes the estimation
problem much more complicated than for a single unknown
(i.e., delay) case. In this paper, we present a more general
treatment to the problem and propose a new adaptive filter that
estimates and tracks both the delay and the relative amplitude
of one of the two received signals vis-a-vis the other. The
development is based on choosing the sampling rate from a
specific set of permissible values, which generates a two-tap
FIR filter model for the delayed signal and also results in a
diagonal autocorrelation matrix for the 2 × 1 filter input vector.
An adaptive algorithm is developed to estimate and track both
the delay and the relative amplitude of the delayed signal by
identifying the filter coefficients. For this, a delay variable and
also an amplitude variable are time updated in an LMS-like
manner, with the former shown to converge in mean to the true
delay value and the latter shown to converge in mean to the true
amplitude with a bias that is negligible (under high input SNRs)
and also which can easily be corrected. To ensure convergence,
separate step sizes are, however, necessary for the delay and the
amplitude variables. A detailed stability analysis is also carried
out, and stability regions in the step-size plane are worked out
for keeping the steady-state delay and amplitude error variance
bounded. The major computation in the proposed method is
a rotation of a vector that can be implemented efficiently
by CORDIC processors. MATLAB-based simulation studies
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confirm satisfactory estimation performance of the proposed
algorithm.

The organization of this paper is as follows. In Section II-A,
we develop the proposed delay estimation algorithm; in
Sections II-B and II-C, we present convergence analysis in
mean and mean square, respectively; and in Section III, we
provide MATLAB-based simulation results.

II. ADAPTIVE DELAY ESTIMATION

A. Proposed Algorithm

Consider the following model for the signals received at the
two sensors, namely, xa(t) and ya(t):

xa(t) = sa(t) + ua(t) (1)

ya(t) =Asa(t − D) + za(t) (2)

where sa(t) = cos(Ωt + φ) is a sinusoid with known analog
frequency Ω and random phase φ that is uniformly distributed
over [0, 2π). The two terms ua(t) and za(t) represent two zero-
mean additive white Gaussian noise processes independent of
each other and also of φ and, thus, of sa(t). The variable D
is the delay between the received copies of the signal sa(t) at
the two sensors, which is unknown and is to be estimated and
tracked. The term A is a gain factor associated with sa(t − D)
and is assumed to be unknown. It is also assumed that the
net phase shift ΩD due to the delay lies within [0, 2π), which
eliminates possibilities of ambiguity over D.

The signals xa(t) and ya(t) are digitized with a sampling
period τ to generate the sequences x(n) ≡ xa(nτ) =
cos(Ωnτ + φ) + ua(nτ)≡s(n)+u(n) and y(n)≡ya(nτ)=
A cos(Ω(nτ−D)+φ)+za(nτ)=A cos(Ωnτ +φ) cos(ΩD)+
A sin(Ωnτ +φ) sin(ΩD)+z(n), where s(n) ≡ sa(nτ) =
cos(Ωnτ + φ), u(n) ≡ ua(nτ), and z(n) ≡ za(nτ). Our
key idea is to select a specific sampling period τ satisfying
Ωτ = π/2r, r ∈ Z = {1, 2, . . .}, or, equivalently, Ωs = 4rΩ,
where Ωs = 2π/τ is the sampling frequency. It is then possible
to write

y(n) = A cos(ΩD) s(n) + A sin(ΩD) s(n − r)

+ z(n), r ∈ Z. (3)

Using (3), one can model y(n) as the noisy output of a system
with transfer function A(cos(ΩD) + sin(ΩD)z−r) (unknown).
Estimation and tracking of the delay then turn out to be a
system identification problem with noisy input, where one
can use a standard LMS-based two-tap adaptive filter with
coefficients, say, w0(n) and wr(n), and take the delay estimate
as D(n) = (1/Ω) tan−1(wr(n)/w0(n)). However, while this
approach guarantees convergence of E[w0(n)] and E[wr(n)] to
the respective true system parameters, the same cannot be said
about the mean delay estimate E[D(n)] vis-a-vis the true delay
value D (at least theoretically). In addition, stability conditions
required to keep the steady-state value of E[D(n) − D]2 within
bound are difficult to establish in this case. In this respect, a
simpler and also more appropriate approach, in our opinion,
would be to use the a priori knowledge of the specific forms

Fig. 1. System identification model for delay and amplitude estimation.

of the system coefficients, viz., A cos(ΩD) and A sin(ΩD),
and precondition the adaptive filter as w(n) = a(n)w(n),
where w(n) = [cos(ΩD(n)), sin(ΩD(n))]T , with T denoting
transposition. The filter weights are then adjusted by directly
updating the parameter estimate vector θ(n) = [D(n), a(n)]T

in an LMS-like manner, as shown in Fig. 1. However, unlike
the conventional LMS algorithm [12], we choose two different
step sizes, namely, μ1 and μ2, respectively, for D(n) and

a(n), for reasons explained later. Defining μ =
[

μ1 0
0 μ2

]
, the

corresponding LMS update equations are given by

θ(n + 1) =θ(n) − μ∇θe
2(n)

=θ(n) − 2μ∇θe(n) e(n) (4)

where ∇θ(.) = [∂(.)/∂D(n), ∂(.)/∂a(n)]T , and the error
signal e(n) is given as e(n) = y(n) − wT (n)x(n), with
x(n) = [x(n), x(n − r)]T , r ∈ Z. It is easy to verify
that ∂e(n)/∂D(n) = −Ωa(n)w′T (n)x(n), where w′(n) =
[− sin(ΩD(n)), cos(ΩD(n))]T . Similarly, ∂e(n)/∂a(n) =
−wT (n)x(n). This results in the following update equation:

θ(n + 1) = θ(n) + 2μΩU(n)x(n) e(n) (5)

where

U(n) =
[

a(n)w′T (n)
wT (n)

]
Ω =

[
Ω 0
0 1

]
.

Note that the main computation in the update term in (5)
is actually a rotation of the vector x(n) by the angle ω(n) =
−ΩD(n), which is given by

[
w′T (n)
wT (n)

]
x(n) ≡

[
− sin (ω(n)) cos (ω(n))
cos (ω(n)) sin (ω(n))

]
x(n).

Further note that the above computation also evaluates the
term wT (n)x(n) which, after multiplication by a(n), generates
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the filter output y(n). The above rotation can be carried out
by a sequence of CORDIC rotations [14], [15] and, thus, can
efficiently be implemented on a pipelined array of CORDIC
processors. Such computational simplifications are, however,
not available in a standard LMS based identification of (3) and
estimation of D.

In the following, we show that the update equation (5) results
in convergence of θ(n) in mean as limn→∞ E[θ(n)] = [D,A +
ε(A)]T , where ε(A) = −2Aσ2

u is a bias term (negligible under
high input SNRs), provided μ1 and μ2 are chosen to satisfy
0 < μ1 < 2/Ω2A2 and 0 < μ2 < 2.

B. Convergence (in Mean) Analysis

First, recall that the phase φ is uniformly distrib-
uted over [0, 2π), meaning the signal autocorrelation is
given as rss(k) = E[s(n)s(n − k)] = (1/2π)

∫ 2π

0 cos(Ωnτ +
φ) cos(Ω(n − k)τ + φ)dφ = (1/2) cos(kπ/2r), r ∈ Z, where
k is any integer. From this and also from the fact that u(n) is
a zero-mean white process independent of s(n), it then follows
that the 2 × 2 input autocorrelation matrix is given as Rxx =
E[x(n)xT (n)] = ((1/2) + σ2

u)I, where σ2
u = E[u2(n)] and I

denotes the 2 × 2 identity matrix. Next, define the instantaneous
parameter error vector as Δ(n) = θ(n) − θ. Then, from (5),
we can write

E [Δ(n+1)]=E [Δ(n)]+2μΩE [U(n)x(n) e(n)] . (6)

Note that the two vectors w(n) and w′(n) are mutually orthog-
onal, i.e., E[wT (n)w′(n)] = 0, and each has norm unity, at
each index n. We now invoke the “independence assumption”
as is common with the analysis of the LMS algorithm [12] and
assume D(n) and a(n) to be statistically independent both of
s(n), or, equivalently, of φ and, thus, of s(n) = [s(n), s(n −
r)]T , and of u(n) = [u(n), u(n − r)]T . Together, this means
θ(n) is statistically independent of x(n). Replacing e(n) in (6)
by y(n) − xT (n)w(n), using the orthogonality between w(n)
and w′(n) and the fact that Rxx = (1/2 + σ2

u)I, we then first
observe

E
[
U(n)x(n)xT (n)w(n)

]

= E
[
U(n)E

{
x(n)xT (n)

}
w(n)

]

=
(

1
2

+ σ2
u

)[
0

A + E [Δa(n)]

]
(7)

where we have used the fact that E[a(n)] = A + E[Δa(n)].
Next, we consider the term E[U(n)x(n)y(n)] on
the right-hand side of (6). To evaluate this, we first
replace y(n) by sT (n)wopt + z(n), where wopt =
[A cos(ΩD), A sin(ΩD)]T . Next, we observe that, since
D(n) and a(n) only depend on the past samples of z(n)
and z(n) is a zero-mean white Gaussian process (i.e.,
samples of z(n) are independent and identically distributed)
independent of the process x(n), E[U(n)x(n)z(n)] =
E[z(n)]E[U(n)x(n)] = 02×1. From this and the fact that

U(n)wopt =A[−a(n) sin(ΩΔD(n)), cos(ΩΔD(n))]T , where
ΔD(n) = D(n) − D, we then have

E [U(n)x(n) y(n)] =E
[
U(n)E

{
x(n)sT (n)

}
wopt

]

=
A

2
E

[
−a(n) sin (ΩΔD(n))

cos (ΩΔD(n))

]

since s(n) and u(n) are mutually independent zero-mean
processes, and E[s(n)sT (n)] = (1/2)I. When D(n) is suffi-
ciently close to D, ΩΔD(n) is small, and we can approx-
imate sin(ΩΔD(n)) by ΩΔD(n) and cos(ΩΔD(n)) by 1,
resulting in

E [U(n)x(n) y(n)] ≈
[−ΩA

2 E [a(n)ΔD(n)]
A
2

]
. (8)

Combining (6)–(8), we then have

E [Δ(n + 1)]

= E [Δ(n)] + 2μΩ
[ −ΩA

2 E [a(n)ΔD(n)]
−Aσ2

u −
(
σ2

u + 1
2

)
E [Δa(n)]

]
(9)

The above results in two recurrence relations, one for
E(ΔD(n)) and the other for E(Δa(n)). For the latter, the
recurrence equation is given as

E (Δa(n+1))=
[
1−2μ2

(
σ2

u+
1
2

)]
E (Δa(n))−2μ2 Aσ2

u.

(10)

For stability of E(Δa(n)), i.e., to have E(Δa(n)) bounded in
the steady state, we should have |1 − 2μ2(σ2

u + (1/2))| < 1,
or, equivalently, 0 < μ2 < 1/(σ2

u + (1/2)) ≈ 2. In such a case

lim
n→∞

E[Δa(n)]=
−2μ2Aσ2

u

1 −
(
1 − 2μ2

(
σ2

u+ 1
2

)) ≈ −2Aσ2
u =ε(A)

or, equivalently, limn→∞ E[a(n)] = A + ε(A), meaning the
estimate of A will be given by (1/(1 − 2σ2

u)) limn→∞ E[a(n)].
In practice, the relative bias ε(A)/A is negligibly small (espe-

cially for high input SNRs), meaning limn→∞ E[Δa(n)] ≈ 0.
Separately, we derive conditions in the next section for keeping
the steady-state value of E(Δ2

a(n)) bounded and small. Un-
der such a case, we can then write E[a(n)ΔD(n)] = E[(A +
Δa(n))ΔD(n)] ≈ E[AΔD(n)]. Substituting this in (9), we
obtain

E (ΔD(n + 1)) = [1 − μ1Ω2A2]E (ΔD(n)) (11)

implying limn→∞ E[ΔD(n)] = 0 if 0 < μ1 < 2/Ω2A2.
Note that, if a common step size μ is used for both D(n)

and a(n), it would imply that 0 < μ < 2 and also 0 < μ <
2/Ω2A2, meaning the upper bound of μ will be given by the
lower of the two bounds, i.e., 2/Ω2A2. Even for frequencies
in the kilohertz range, this would mean an upper bound in
the range of 10−8 or less. Such a small value of μ, however,
gives rise to some serious problems. Firstly, the update term
for a(n) in (5) in such cases will be negligibly small, resulting
in a(n + 1) ≈ a(n), or, equivalently, Δa(n + 1) ≈ Δa(n) in
(9). In other words, a(n) will remain more or less static at
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its initial value a(0) and will not converge to A. [The update
term for E[ΔD(n)] in (9), however, is free of this problem
as μ is actually multiplied there by Ω2A2 and 0 < μΩ2A2 <
2. However, as a(n) ≈ a(0), the update equation and the
corresponding convergence condition in such a case will be
given by E(ΔD(n + 1)) = [1 − μΩ2Aa(0)]E(ΔD(n))] and
0 < μΩ2Aa(0) < 2, respectively—note that convergence will
be very slow if a(0) ≈ 0.] Secondly, as can easily be seen from
the next section and the Appendix, the steady-state variance
E[ΔD(n)]2 in such cases will have a contribution coming
from the initial error variance [a(0) − A]2, which may become
substantial since A is unknown. The proposed scheme avoids
these problems by separating out the step size μ2 for a(n) from
the step size for D(n), which enables a(n) to converge faster to
A independent of the convergence of D(n).

C. Mean Square Error Analysis

We start with the parameter error correlation matrix
RΔΔ(n) = E[Δ(n)ΔT (n)]. Since our primary interest lies in
E[ΔD(n)]2 and E[Δa(n)]2, we will be evaluating only the
diagonal elements of RΔΔ(n) and leave aside the nondiagonal
entries with a “∗” symbol. Then, from (6), we have

RΔΔ(n+1)=RΔΔ(n)+A(n)+B(n)+BT (n) (12)

where A(n) = 4μΩE[U(n)x(n)e(n)e(n) xT (n)UT (n)]Ωμ,
and B(n) = 2μΩE[U(n)x(n)e(n)ΔT (n)]. To evaluate
B(n), we replace e(n) by y(n) − xT (n)w(n) ≡
(sT (n)wopt + z(n)) − xT (n)w(n) and write B(n) as
B(n) = B1(n) − B2(n), where B1(n) =
2μΩE[U(n)x(n)(sT (n)wopt + z(n))ΔT (n)] and B2(n) =
2μΩE[U(n)x(n)xT (n)w(n)ΔT (n)]. Proceeding as before,
i.e., using the “independence assumption” and recalling that
z(n) is a zero-mean white Gaussian process, E[x(n)sT (n)] =
(1/2)I, U(n)wopt ≈ A[−a(n)ΩΔD(n), 1]T , U(n)w(n) =
[0, a(n)]T , we have

B1(n) = AμΩE

[
−a(n)ΩΔ2

D(n) ∗
∗ Δa(n)

]

B2(n) = 2
(

σ2
u +

1
2

)
μΩE

[
0 ∗
∗ a(n)Δa(n)

]
. (13)

Substituting E[a(n)Δa(n)] by AE[Δa(n)] + E[Δ2
a(n)],

neglecting Aσ2
uE[Δa(n)] in comparison to (σ2

u +
(1/2))E[Δ2

a(n)] (since, in the steady state, i.e., for
very large n, E[Δa(n)] ≈ 0) and using the approxi-
mations (σ2

u + (1/2))E[Δ2
a(n)] ≈ (1/2)E[Δ2

a(n)] and
E[a(n)Δ2

D(n)] = E[(A + Δa(n))Δ2
D(n)] ≈ E[AΔ2

D(n)],
we then have

B(n) = 2μ
[
−Ω2A2

2 E
[
Δ2

D(n)
]

∗
∗ − 1

2E
[
Δ2

a(n)
]
]

. (14)

For A(n), we first make the following definitions:
1) α(n) = a(n)w′T (n)u(n);
2) β(n) = wT (n)u(n);

3) γ(n) = a(n)w′T (n)x(n) = a(n) sin(nπ/2r + φ −
ΩD(n)) + α(n), r ∈ Z;

4) γ′(n) = wT (n)x(n) = cos(nπ/2r + φ − ΩD(n)) +
β(n), r ∈ Z.

Then, we can write

A(n) = 4μΩ
[

E [γ(n) e(n)]2 ∗
∗ E [γ′(n) e(n)]2

]
Ωμ.

(15)

In the Appendix, it is shown that A11(n) ≈
4μ2

1Ω
2[(3/8)Ω2A4E{Δ2

D(n)}+(A2/8)E{Δ2
a(n)}+(σ2

zA2/
2) + (σ2

uA4/2)] and A22(n) ≈ 4μ2
2[(1/8)Ω2A2E{Δ2

D(n)} +
(3/8)E{Δ2

a(n)} + (σ2
z/2) + (σ2

uA2/2)]. Defining δ(n) =
[E{Δ2

D(n)}, E{Δ2
a(n)}]T , it is then possible to write

δ(n + 1) = Fδ(n) + h (16)

where

F =
[

1 − 2μ1Ω2A2 + 3
2μ2

1Ω
4A4 1

2μ2
1Ω

2A2

1
2μ2

2Ω
2A2 1 − 2μ2 + 3

2μ2
2

]
(17)

and

h =
(
σ2

z + σ2
uA2

) [
2μ2

1Ω
2A2

2μ2
2

]
. (18)

For stability, i.e., to maintain limn→∞ ‖δ(n)‖ finite, the eigen-
values of F should have magnitude less than unity [13]. The
eigenvalues of F, which are obtained by finding the roots of
the characteristic polynomial (λ − F11)(λ − F22) − F12F21,
are given as

λ1 =
(F11 + F22) +

√
(F11 − F22)2 + 4F12F21

2

λ2 =
(F11 + F22) −

√
(F11 − F22)2 + 4F12F21

2

where Fij = [F]i,j , i, j = 1, 2. Now, it can easily be seen that
each Fij is a strictly positive function, and thus, λ1 = |λ1| >
|λ2|, meaning, for stability, it is enough to have λ1 < 1. Substi-
tuting the value of each Fij in λ1, introducing a normalized
step size μ′

1 = μ1Ω2A2 and recalling from the convergence
(in mean) condition that μ1, μ2 > 0, the above, after some
calculations, leads to the following condition:

f (μ′
1, μ2) ≡ 4 − 3μ′

1 − 3μ2 + 2μ′
1μ2 < 0. (19)

The function f(μ′
1, μ2) represents a quadratic surface, as shown

in Fig. 2 over the region 0 < μ′
1, μ2 < 2 (i.e., the region of

convergence (in mean) of the proposed algorithm). For sta-
bility, we need to find out portion of this region where the
surface lies above the μ′

1 = 0, μ2 = 0 plane. Alternatively, the
equation f(μ′

1, μ2) = 0, or, equivalently, μ′
1 = (4 − 3μ2)/(3 −

2μ2) represents a hyperbola with center at (3/2, 3/2), as shown
in Fig. 3. The inequality (19) then results in the following
stability regions: for μ2 < 3/2 (i.e., 3 − 2μ2 > 0), μ′

1 < (4 −
3μ2)/(3 − 2μ2), and for μ2 > 3/2 (i.e., 3 − 2μ2 < 0), μ′

1 >
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Fig. 2. Quadratic surface f(μ′
1, μ2).

Fig. 3. Stability region in the μ′
1−μ2 plane.

(4 − 3μ2)/(3 − 2μ2). For both convergence in mean and sta-
bility of the steady-state MSE, one has to choose μ′

1 and μ2

from the intersection of the above region and the rectangle with
vertices (0, 0), (0, 2), (2, 0), and (2, 2). This intersection is
given by {μ′

1, μ2|0 < μ2 < (4/3), 0 < μ′
1 < (4 − 3μ2)/(3 −

2μ2)} and is shown by shaded lines in Fig. 3.
The steady-state δ(n) for a stable (16) will be given by

(I − F)−1h, which, after some calculations, is obtained as

lim
n→∞

δ(n)=K

[
μ1(2 − μ2)

μ2 (2 − μ1Ω2A2)

]
≡K

[
μ1(2 − μ2)
μ2 (2 − μ′

1)

]
(20)

where

K =
2(σ2

z + σ2
uA2)

4 − 3μ′
1 − 3μ2 + 2μ′

1μ2
≡ 2(σ2

z + σ2
uA2)

f(μ′
1, μ2)

.

Note that while (19) ensures that the steady-state values of
E[Δ2

D(n)] and E[Δ2
a(n)] remain bounded, it is important to

keep these values small, particularly in view of the fact that
the convergence of E[ΔD(n)] to D, as proved in Section II-B,
is based on the approximation E[a(n)ΔD(n)] ≈ E[AΔD(n)].
This means that μ′

1 and μ2 must not be chosen from areas
where f(μ′

1, μ2) is close to zero as that leads to division by zero

Fig. 4. Mean delay estimate E[D(n)] vis-a-vis the true delay trajectory and
the theoretical E[D(n)] curve as per (11) (SNR of 17 dB).

in K. From Fig. 2, it then follows that, for better convergence
and stability behavior, one should choose μ′

1 and μ2 from areas
close to the origin.

III. SIMULATION RESULTS

Computer simulations were carried out to evaluate the delay
estimation performance of the proposed scheme. For this, a si-
nusoidal signal of amplitude A = 0.8 and frequency Ω = 2π ×
103 rad · s−1 was used, which was sampled with a sampling
period of τ = 2.5 × 10−4 s (meaning the sampling frequency
Ωs = 4 Ω). The powers of the two noise processes u(n) and
z(n) were initially fixed as 0.01 and 0.0064, respectively,
resulting in the same SNR of 17 dB for both the received signals
x(n) and y(n). The step-size constants μ′

1 and μ2 were both
taken to be 0.1. Observations made are based on averages of
500 independent runs of the proposed algorithm.

Fig. 4 shows the trajectory of the mean delay estimate
E[D(n)] for a step change in D, which was held constant at
0.0833 ms during the first 250 iterations and instantaneously
changed to 0.125 ms afterward. It is seen from Fig. 4 that the
observed E[D(n)] estimates and tracks the piecewise constant
time delay accurately, taking about 50 iterations for the given
choice of μ′

1 and μ2 to converge to the true delay value. It is also
easily seen that the simulated plot of E[D(n)] for the proposed
method conforms very well to the dynamics described by
(11). A representative plot of the instantaneous delay estimate
D(n) is also shown in Fig. 5, which also confirms satisfac-
tory estimation and tracking performance. Similarly, for the
aforementioned step variation in D and a constant A = 0.8, the
mean amplitude estimate E[a(n)] was simulated and is shown
in Fig. 6, where it is seen to agree very well with the theoretical
calculation of (10). The steady-state value of E[Δa(n)] for this
case is seen to lie at around −0.0157, which closely matches
the theoretical value of ε(A) = −2Aσ2

u (= −0.016). The bias
eliminated estimate of A, namely, (1/(1 − 2σ2

u))E[a(n)], is
also plotted in Fig. 6, which is seen to converge on the true
A after about 50 iterations. Very good convergence behavior
is also noticed for the instantaneous estimate a(n), which,
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Fig. 5. Delay estimate D(n) based on a single run of the experiment vis-a-vis
the true delay (SNR of 17 dB).

Fig. 6. Mean amplitude estimate E[a(n)] vis-a-vis the true amplitude A and
the theoretical E[a(n)] curve as per (10); mean amplitude estimate after bias
correction (SNR of 17 dB).

after bias correction, is displayed against the true amplitude in
Fig. 7. Next, we measured the mean square delay and amplitude
estimation errors, i.e., E[Δ2

D(n)] and E[Δ2
a(n)], respectively,

and the results are plotted in Figs. 8 and 9, respectively. It is
seen that both the estimation errors E[Δ2

D(n)] and E[Δ2
a(n)]

rapidly decay to their respective steady-state values. Further-
more, the steady-state values of E[Δ2

D(n)] at D = 0.0833 ms
and D = 1.25 ms were measured as 0.054 × 10−3 ms2 and
0.058 × 10−3 ms2, respectively, which are close to the theoret-
ical value given by (20), namely, 0.056 × 10−3 ms2. Again, the
steady-state value of E[Δ2

a(n)] was measured as 0.0017, which
favorably compares with its theoretical value of 0.0014 as
per (20).

We next conducted the aforementioned experiment by vary-
ing the SNR over a wide range. For this, as before, we kept both
the input and output SNRs to be the same. Note that, with the
increase in noise power, the factor K in (20) increases, meaning
both E{Δ2

D(n)} and E{Δ2
a(n)} become larger. This, in turn,

affects the dynamics of E[Δa(n)] and E[ΔD(n)], causing them
to slowly deviate from (10) and (11), respectively, and thus

Fig. 7. Amplitude estimate a(n) (after bias removal) based on a single run of
the experiment vis-a-vis the true amplitude A (SNR of 17 dB).

Fig. 8. Mean square delay estimation error E[Δ2
D(n)] (SNR of 17 dB).

Fig. 9. Mean square amplitude estimation error E[Δ2
a(n)] (SNR of 17 dB).

affecting the convergence (note that (10) and (11) have been
derived assuming relatively small magnitudes for both Δa(n)
and ΔD(n)). In the experiments conducted, however, no major
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Fig. 10. Mean delay estimate E[D(n)] for SNRs of 17, 12, and 9 dB.

Fig. 11. Mean amplitude estimate E[a(n)] (without bias correction) for
SNRs of 17, 12, and 9 dB.

deterioration in convergence behavior was noticed, except for
a very low range of the SNR (typically 0–6 dB). In Fig. 10,
we show the convergence behavior of the mean delay estimate
E[D(n)] for three SNR figures, namely, 17 dB (shown by the
dashed line), 12 dB, and 9 dB. The same is shown for the
mean amplitude estimate E[a(n)] (without bias correction) in
Fig. 11, where we have also plotted the respective trajectories
of E[a(n)] as given by (10) (note that the bias term −2Aσ2

u,
different for the three SNR figures, clearly shows up in the
respective plots of E[a(n)] in Fig. 11). Both Figs. 10 and
11 confirm that the estimation performance of the proposed
algorithm deteriorates as the SNR is brought down from 17
to 9 dB. However, even at 9 dB, the extent of deterioration is
not significant and, on the contrary, is very much within the
acceptable range.

IV. DISCUSSIONS AND CONCLUSION

A new adaptive filter is presented, which considers two noisy
sinusoids of the same frequency received at two spatially sep-
arated sensors and directly estimates the delay and the relative
amplitude of one of them taking the other as reference. The

algorithm uses the sampling frequency from a specified set that
results in a two-tap FIR filter model for the delayed signal. The
delay and the amplitude are estimated by identifying the FIR
filter, for which a delay variable and an amplitude variable are
time updated in an LMS-like manner. Trajectories for the mean
delay estimate and mean amplitude estimate are derived, and
convergence conditions are established. To ensure convergence,
the algorithm needs to employ separate step sizes for the delay
and the amplitude update processes. A detailed stability analy-
sis is carried out, and stability regions in the step-size plane
are determined that guarantee bounded steady-state MSEs. The
proposed algorithm is computationally very simple and is well
suited for implementation on CORDIC processors. MATLAB
simulations showed satisfactory estimation performance of the
proposed method, both in mean and mean square.

APPENDIX

EVALUATION OF THE MATRIX A(n)

First, by expressing y(n) as y(n) = A cos((nπ/2r) +
φ − ΩD) + z(n), e(n) as e(n) = y(n) − a(n)γ′(n), and
a(n)γ′(n) as a(n)γ′(n) = (A + Δa(n)) cos((nπ/2r) + φ −
ΩD(n)) + a(n)β(n), and as before, using the approximation
sin(ΩΔD(n)/2) ≈ ΩΔD(n)/2 for small ΩΔD(n), we write

e(n) ≈ z(n) − ΩAΔD(n) sin
(

nπ

2r
+ φ − Ω(D + D(n))

2

)

−Δa(n) cos
(nπ

2r
+ φ − ΩD(n)

)
− a(n)β(n). (A.1)

To evaluate A(n), we substitute e(n) by the above approxi-
mation in E[γ(n)e(n)]2 and E[γ′(n)e(n)]2 and evaluate the
expectation on a term-by-term basis. For both cases, the cross
terms involving z(n) take zero value since z(n) is a zero-mean
white Gaussian process independent of φ and u(n) and also
of D(n), as explained in Section II-B. The remaining terms in
E[γ(n)e(n)]2 and E[γ′(n)e(n)]2 are evaluated here.

1) E[γ(n)e(n)]2. This consists of the following terms:

A1) E[z2(n)γ2(n)]: Since z(n) is independent of
φ, u(n), a(n), and D(n), E[z2(n)γ2(n)] =
σ2

zE[γ2(n)], where σ2
z = E[z2(n)]. To evaluate

E[γ2(n)], we substitute γ(n) by a(n) sin((nπ/2r) +
φ − ΩD(n)) + α(n), introduce Eφ as the expectation
operator w.r.t. φ, and make the following general
observations: for any Ψ independent of φ and
for any nonzero integer k, Eφ[sin(kφ + Ψ)] =
Eφ[cos(kφ + Ψ)] = 0, meaning Eφ[sin2(kφ + Ψ)] =
(1/2)Eφ[1 − cos(2kφ + 2Ψ)] = 1/2, and similarly,
Eφ[cos2(kφ + Ψ)] = 1/2. From this and using
the independence of D(n) and a(n) w.r.t. φ
and u(n) as per the “independence assumption,”
E[γ2(n)] is then seen to consist of the following
terms: 1) E[a2(n) sin2((nπ/2r) + φ − ΩD(n))] =
E [a2(n) Eφ[sin2((nπ/2r) + φ − ΩD(n))]] =
(1/2)E[a2(n)]; 2) E [ 2a(n) sin((nπ/2r) + φ −
ΩD(n))α(n)] = E [2a (n)Eφ[sin((nπ / 2r) + φ −
ΩD(n))]α(n)] = 0; and 3) E[α2(n)] =
E[a2(n)w′T (n)E[u(n)uT (n)]w′(n)] = σ2

uE[a2(n)].
Thus, E[z2(n)γ2(n)] = σ2

z(1/2 + σ2
u)E[a2(n)].
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Neglecting the fourth-order term σ2
uσ2

z , which is
very small for high SNRs, we have E[z2(n)γ2(n)]≈
(σ2

z/2)E[a2(n)]≈(σ2
zA2/2)+(σ2

z/2)E[Δ2
a(n)], where

we have neglected the term involving E[Δa(n)], which
becomes very small for large n.

B1) E[a2(n)β2(n)γ2(n)]: As before, using the inde-
pendence of u(n) w.r.t. φ, a(n), and D(n), we observe
the following: 1) E[a4(n) sin2((nπ/2r) + φ −
ΩD(n))β2(n)] = E[a4(n) sin2((nπ/2r) + φ −
ΩD(n))wT (n)E{u(n)uT (n)}w(n)] = σ2

u E[a4(n)
Eφ[sin2((nπ/2r)+φ−ΩD(n))]]=(σ2

u/2)E[a4(n)] ≈
σ2

uA4/2 + 3σ2
uA2E[Δ2

a(n)], and 2) any cross
term involving the first power of sin((nπ/2r) +
φ − ΩD(n)) results in zero, since Eφ[sin((nπ/2r) +
φ − ΩD(n))] = 0. The third term, i.e., E[a2(n)α2

(n)β2(n)], on simplification, results in E[a4(n)
[(−(1/2) sin(2ΩD(n))u2(n) + (1/2) sin(2ΩD(n))u2

(n − 1) + cos(2ΩD(n))u(n)u(n − 1))]2]. Since u(n)
is a zero-mean white Gaussian process, we have
E[u3(n)] = 0 and E[u4(n)] = 3σ4

u. From this
and using the independence of u(n) with D(n)
and a(n), we observe that E[a2(n)α2(n)β2(n)]
consists only of terms involving σ4

u, which is again
negligibly small for high SNR conditions. Thus,
E[a2(n)β2(n)γ2(n)] ≈ (σ2

uA4/2) + 3σ2
uA2E[Δ2

a(n)].
C1) E[Ω2A2Δ2

D(n) sin2((nπ/2r) + φ − (Ω(D + D(n))/
2))γ2(n)]: Substituting the value of γ(n), we observe
that this has three terms: 1) a cross term involv-
ing the first power of α(n), which becomes
zero after expectation since u(n) is zero mean
and is independent of φ, a(n), and D(n);
2) E[a2(n)Ω2A2Δ2

D(n) sin2((nπ/2r) + φ − (Ω(D +
D(n))/2))w′T (n) E[u(n)uT (n)]w′(n)] = Ω2A2σ2

u

E[a2(n)Δ2
D(n)/2{1 − cos((nπ/r) + 2φ − Ω(D(n) +

D)}] = (1/2)Ω2A2σ2
uE[a2(n)Δ2

D(n)] ≈ (1/2)Ω2A4

σ2
uE[Δ2

D(n)]; and 3) Ω2A2E[a2(n)Δ2
D(n) sin2((nπ/

2r)+φ−(Ω(D+D(n))/2)) sin2((nπ/2r)+φ− Ω
D(n))]=(Ω2A2/4)E[a2(n)Δ2

D(n)Eφ[{1 − cos((nπ/
r) + 2φ − Ω(D + D(n)))}{1 − cos((nπ/r) + 2φ −
2ΩD(n))}]] = (3/8)Ω2A2E[a2(n)Δ2

D(n)] ≈ (3/8)Ω2

A4E[Δ2
D(n)], since Eφ[cos((nπ/r) + 2φ − Ω(D +

D(n))) cos((nπ/r)+2φ−2ΩD(n))]=(1/2)
Eφ[cos((2nπ/r) + 4φ − Ω(D + D(n)) − 2ΩD(n)) +
cos(ΩΔD(n))] ≈ 1/2, where we use the approximation
cos(ΩΔD(n)) ≈ 1 for small values of ΩΔD(n). Com-
bining, E[Ω2A2Δ2

D(n) sin2((nπ/2r) + φ − (Ω(D +
D(n))/2))γ2(n)] ≈ ((1/2)σ2

u + (3/8))Ω2

A4E[Δ2
D(n)] ≈ (3/8)Ω2A4E[Δ2

D(n)] for high input
SNR conditions.

D1) E[Δ2
a(n) cos2((nπ/2r) + φ − ΩD(n))γ2(n)]: This

consists of three terms, out of which the cross term
involving the first power of α(n) results in zero
for reasons previously explained. The other two
terms are as follows: 1) E[a2(n) sin2((nπ/2r) +
φ − ΩD(n))Δ2

a(n) cos2((nπ/2r) + φ − ΩD(n))] =
(1/4)E[a2(n)Δ2

a(n) sin2((nπ/r) + 2φ − 2ΩD(n))] ≈
(A2/8)E[Δ2

a(n)] and 2) E[Δ2
a(n) cos2((nπ/2r) + φ −

ΩD(n))α2(n)] = σ2
uE[Δ2

a(n)a2(n) cos2((nπ/2r) +

φ − ΩD(n))] ≈ (σ2
uA2/2)E[Δ2

a(n)]. Combining,
E[Δ2

a(n) cos2((nπ/2r) + φ − ΩD(n))γ2(n)] ≈ [σ2
u +

(1/4)](A2/2)E[Δ2
a(n)].

E1) E[2ΩAΔD(n) sin((nπ/2r) + φ − (Ω(D + D(n))/
2))a(n)β(n)γ2(n)]: Again, substituting the value of
γ(n) and using the “independence assumption,” we
observe that this has the following three terms: 1) a
cross term involving the first power of β(n) but free
of α(n), which is zero, since E[β(n)] = 0; 2) a cross
term involving α(n)β(n), which is also zero, since
E[α(n)β(n)] = E[a(n)w′T (n)E[u(n)uT (n)]w(n)] =
0 (since w′(n) and w(n) are mutually orthogonal); and
3) E[2ΩAΔD(n) sin((nπ/2r) + φ − (Ω(D + D(n))/
2))a(n)β(n)α2(n)] = 0, since Eφ[sin((nπ/2r) + φ −
(Ω(D+D(n))/2))]=0. Thus, E[2ΩAΔD(n) sin((nπ/
2r)+φ−(Ω(D+D(n))/2))a(n)β(n)γ2(n)]=0.

F1) E[2a(n)β(n)Δa(n) cos((nπ/2r) + φ − ΩD(n))γ2

(n)]: Expanding γ2(n), we find that this has three
terms: 1) a cross term involving the first power
of β(n) but free of α(n), which is zero, as explained
in E1 above; 2) a cross term involving α(n)β(n),
which is also zero, again as explained in E1;
and 3) E[2a(n)β(n)Δa(n)α2(n) cos((nπ/2r)+
φ−ΩD(n))] = 0, since Eφ[cos((nπ/2r) + φ −
ΩD(n))]=0. Thus, E[2a(n)β(n)Δa(n) cos((nπ/2r) +
φ − ΩD(n))γ2(n)] = 0.

G1) E[2ΩAΔD(n)Δa(n) sin((nπ/2r)+φ−(Ω(D+
D(n))/2)) cos((nπ/2r) + φ − ΩD(n))γ2(n)]: As
before, substituting the value of γ(n), this
is seen to consist of three terms: 1) a term
involving the first power of α(n), which results
in zero, as explained earlier; 2) a term involving
α2(n) ≡ a2(n)w′T (n)u(n)uT (n)w′(n), which leads
to σ2

ua2(n) after applying expectation w.r.t. u(n).
Noting that Eφ[2 sin((nπ/2r) + φ − (Ω(D + D(n))/
2)) cos((nπ/2r) + φ − ΩD(n))] ≈ ΩΔD(n)/2 and re-
placing a(n) by (A + Δa(n)), this term can then
be approximated as (1/2)Ω2σ2

uA3E[Δ2
D(n)Δa(n)].

3) To evaluate the third term, we first observe
that Eφ[2 sin((nπ/2r) + φ − (Ω(D + D(n))/2))
cos((nπ/2r) + φ − ΩD(n)) sin2((nπ/2r) + φ − Ω
D(n))] ≈ ΩΔD(n)/8 under the following approxi-
mation: cos(ΩΔD(n)/2) ≈ 1. This term then
approximates to (1/8)Ω2A3E[Δ2

D(n)Δa(n)], and thus,
combining, E[2ΩAΔD(n) sin((nπ/2r) + φ − (Ω(D +
D(n))/2)) cos((nπ/2r) + φ − ΩD(n))γ2(n)] ≈
1/2Ω2A3(1/4 + σ2

u)E[Δ2
D(n)Δa(n)].

Combining the results as obtained under A1–G1 and
with some straightforward approximations, we obtain
A11(n)≈4μ2

1Ω
2[(3/8)Ω2A4E{Δ2

D(n)}+(A2/8)E{Δ2
a(n)}+

(σ2
zA2/2) + (σ2

uA4/2)].
2) E[γ′(n)e(n)]2. This consists of the following terms:

A2) E[z2(n)γ′2(n)]: From A1, it is easy to check that
E[z2(n)γ′2(n)] = ((1/2) + σ2

u)σ2
z ≈ (1/2)σ2

z .
B2) E[a2(n)β2(n)γ′2(n)]: From B1, E[a2(n)

β2(n)γ′2(n)] ≈ (σ2
u/2)E[a2(n)] ≈ (σ2

uA2/2) + (σ2
u/

2)E[Δ2
a(n)].
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C2) E[Ω2A2Δ2
D(n) sin2((nπ/2r) + φ − (Ω(D + D(n))/

2))γ′2(n)]: Again, following the steps in C1, it is
easy to check that E[Ω2A2Δ2

D(n) sin2((nπ/2r) +
φ − (Ω(D + D(n))/2))γ′2(n)] ≈ (1/2)Ω2A2[σ2

u +
(1/4)]E[Δ2

D(n)] ≈ (1/8)Ω2A2E[Δ2
D(n)].

D2) E[Δ2
a(n) cos2((nπ/2r) + φ − ΩD(n))γ′2(n)]: As in

D1, this consists of three terms: 1) a cross term
involving the first power of β(n), which is zero;
2) E[Δ2

a(n) cos4((nπ/2r) + φ − ΩD(n))] = (1/4)
E[Δ2

a(n){1+cos((nπ/r)+2φ − 2ΩD(n))}2] = (3/8)
E[Δ2

a(n)]; and 3) E[Δ2
a(n) cos2((nπ/2r) + φ −

ΩD(n))β2(n)] = (σ2
u/2)E[Δ2

a(n)]. Combining, E[Δ2
a

(n) cos2((nπ/2r) + φ − ΩD(n))γ′2(n)] = ((σ2
u/2) +

(3/8))E[Δ2
a(n)] ≈ (3/8)E[Δ2

a(n)].
E2) E[2ΩAΔD(n) sin((nπ/2r) + φ − (Ω(D + D(n))/

2))a(n)β(n)γ′2(n)]: This consists of three terms—one
involving the first power of β(n), which is zero,
and the other involving β3(n), which is also zero,
since Eφ[sin((nπ/2r) + φ − (Ω(D + D(n))/2))] = 0.
For the third term, we replace E[β2(n)] by σ2

u as
before and note that Eφ[4 sin((nπ/2r) + φ − (Ω(D +
D(n))/2)) cos((nπ/2r) + φ − ΩD(n))] ≈ ΩΔD(n).
This leads to E[2ΩAΔD(n) sin((nπ/2r) + φ −
(Ω(D + D(n))/2))a(n)β(n)γ′2(n)] ≈ σ2

uΩ2AE[a(n)
Δ2

D(n)] ≈ σ2
uΩ2A2E[Δ2

D(n)].
F2) E[2a(n)β(n)Δa(n) cos((nπ/2r) + φ − ΩD(n))γ′2

(n)]: Following the lines of E2, it is easy to verify
that the above is equal to 2σ2

uE[a(n)Δa(n)] =
2σ2

uE[(A + Δa(n))Δa(n)] ≈ 2σ2
uE[Δ2

a(n)], since, for
large n, E[Δa(n) ≈ 0.

G2) E[2ΩAΔD(n)Δa(n) sin((nπ/2r) + φ − (Ω(D +
D(n))/2)) cos(nπ/2r + φ − ΩD(n))γ′2(n)]: As
before, after substituting the value of γ′(n), we
observe that the cross term involving the first power
of β(n) is zero and the other one involving β2(n)
approximates to (1/2)Ω2Aσ2

uE[Δ2
D(n)Δa(n)]. The

third term involves Eφ[sin((nπ/2r) + φ − (Ω(D +
D(n))/2)) cos3((nπ/2r) + φ − ΩD(n))]. Following
the procedure adopted above, this gets approximated
to (3/16)ΩΔD(n), meaning the third term is
approximately equal to (3/8)Ω2AE[Δ2

D(n)Δa(n)].
Combining, E[2ΩAΔD(n)Δa(n) sin((nπ/2r) + φ −
(Ω(D+D(n))/2)) cos((nπ/2r)+φ−ΩD(n))γ′2(n)]≈
((σ2

u/2) + (3/8))Ω2AE[Δ2
D(n)Δa(n)].

Combining the results as obtained under A2–G2 and
with some straightforward approximations, we obtain
A22(n) ≈ 4μ2

2[(1/8)Ω2A2E{Δ2
D(n)} + (3/8)E{Δ2

a(n)} +
(σ2

z/2) + (σ2
uA2/2)].
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